行业动态

Industry Trends

图扬科技|能监测血糖的隐形眼镜

说起对血糖进行实时监控的手段时,糖尿病患者的选择十分有限。

医学研究人员一直在寻找一种无创的替代方法来进行随时随地的自我检测,至少发明出可以皮下佩戴的全天候传感器。现在有一支韩国研发团队找到了一个解决方案:用隐形眼镜监视眼泪中的葡萄糖含量。

这不是第一次有人想到隐形眼镜。早在2014年,谷歌便宣布开发一种可以测血糖的隐形眼镜,但至今尚未完成—如果它还在开发中的话。

韩国蔚山国立科学和技术研究院的材料科学家Jihun Park及其同事已经在兔子身上进行了原型实验和测试,并报告说它不会引起不良反应。

而且它柔软又有弹性,只有极少数的刚性部件,尽可能舒适地满足佩戴者。它既不含易碎和厚重的成分,不会阻挡视力或伤害眼睛。

隐形眼镜内的组件围绕边缘排列,远离瞳孔。它们由一个葡萄糖传感器,一个朝外的小型绿色LED,一个天线和一个整流器组成,全部由超细柔性电线连接。

能监测血糖的隐形眼镜

Park et al, Science Advances

天线和整流器接收来自发射器的射频信号,并将其转换成电能,满足葡萄糖监测器和LED微弱的电力需求。

当葡萄糖水平飙升到高点时,朝向外的LED会被关闭,因此不会干扰到正常视物。

这也意味着佩戴者不得不通过镜子来查看自己的血糖的含量,但它确实有效,即使眼泪中的葡萄糖浓度比血糖浓度低5-10倍。

听起来好像很笨重,但镜片内部的部件——即使是刚性部件,如葡萄糖监测器中的硅垫片,也只是镜片本身厚度的百分之一。

该团队尚未进行人体测试,但他们已经在兔子身上进行了测试。报告说,兔子对镜片没有任何不良反应。

这一点尤为重要,因为葡萄糖监测仪使用葡萄糖氧化酶与糖结合 ——此过程的副产品是过氧化氢,可能会损伤或刺激眼球。

它不仅安全性良好,而且研究团队发现镜片准确地追踪了兔子的血糖水平。

在人类可以使用之前,或许还有一段路要走,但现在至少表明这条路是可行的,未来只是一个时间问题。

“使用活体兔子进行的体内测试……为应用于人眼和眼泪的未来智能隐形眼镜进行非侵入性卫生监测实验提供了实质性的安全承诺。”他们在报告中写道。

该研究已发表在《科学前沿》Science Advances上。


深圳市图扬科技有限公司

专注于蓝牙音箱、蓝牙耳机、车载应用、智能家居、IoT物联等市场领域方案开发

拥有强大的技术团队围绕MCU微控制器、音频解码SoC、蓝牙音频数传BLE及各类微电子传感器的技术做相应的产品方案设计及研发

电话:+0755-21003695/21003965

网址:www.tome-sz.com

邮箱:tome@tome-sz.com/hr@tome-sz.com(简历投寄)


图扬科技|智能穿戴设备如何进行心率监测?

随着智能化浪潮的来袭,智能穿戴设备迎来了飞速发展期,智能手环、智能手表、智能戒指等可穿戴品类层出不穷的同时,产品自身功能也在不断完善,比如越来越多的产品都标配了心率监测功能。

如今,以智能手环和智能手表为代表的智能穿戴产品配备的心率监测功能正被越来越多人接受,甚至有的人早已把它当作了选择产品的必备功能之一。那么,智能穿戴设备是如何监测心率的呢?今天,就来聊聊心率监测那些事儿。

为什么要测量心率?

作为人体最重要的生命体征之一,每个人的心率都会因年龄、性别及其他生理情况的不同而不同。一般而言,正常成年人安静时的心率平均在75次/分左右(60~100次/分之间)。同一个人,在安静或睡眠时心率减慢,运动时或情绪激动时心率加快,在某些药物或神经体液因素的影响下,会使心率发生加快或减慢。经常进行体力劳动和体育锻炼的人,平时心率较慢。

图扬科技|智能穿戴设备如何进行心率监测?

具体来说,影响心率变化的因素主要是三大调节系统,即自身调节、体液调节、神经调节。心率的变化能直接或间接地反映人体多方面的健康状态,这就是测量心率的意义。放在智能穿戴领域,测量心率的意义则主要表现在三个方面。

首先是运动方面,心率可以体现用户运动时身体的真实信息,如果心率太高运动太剧烈,用户的身体水分蒸发太快,那么这种运动对身体无益,如果只是轻度运动心率不够高,用户也就不可能燃烧足够卡路里。

其次是疾病方面,通过监测静息心率是否在正常范围、日常活动中监测心脏停搏、心率异常增高等可起到及时预防疾病的作用,甚至通过心电监测心率还能检测到心律是否异常。此外,通过指尖光电容积脉搏波描记法还可以监测脉搏波变化,以分析脉率、血氧浓度,糖尿病患者的微循环外周血管状态等。

最后是精神方面,通过监测到的心率变异性,可分析自主神经功能评估,如精神压力、紧张与放松程度以及睡眠质量等。

心率监测如何实现?

作为21世纪的新兴产物—智能穿戴产品,因其特定的使用场景和佩戴要求,应用在该领域的心率监测技术目前主要有光电容积脉搏波描记法,简称光电法、心电信号法、压力振荡法、图像信号分析法等几类。

光电法

简单来说,这种测量心率的方法就是基于物质对光的吸收原理,通过智能穿戴设备的绿色LED灯搭配感光光电二极管照射血管一段时间,由于血液是红色的,它可以反射红光吸而收绿光,在心脏跳动时,血液流量增多,绿光的吸收量会随之变大;处于心脏跳动的间隙时血流会减少,吸收的绿光也会随之降低。因此,根据血液的吸光度可测量心率。

具体而言,当一定波长的光束照射到皮肤表面时,光束将通过透射或反射方式传送到光电接收器,在此过程中由于受到皮肤肌肉和血液吸收的衰减作用,检测器监测到光的强度将减弱。其中人体的皮肤、骨骼、肉、脂肪等对光的反射是固定值,而毛细血管和动静脉则在心脏的作用下随着脉搏容积不停变大变小。当心脏收缩时,外周血容量最多、光吸收量也最大,检测到的光强度最小;而在心脏舒张时,正好相反,检测到的光强度最大,使光接收器接收到的光强度随之呈脉动性变化。

大部分智能手表都采用了光电法监测心率,它们的明显特征是传感器部位配备了绿色LED灯。

这种测量原理的光电传感器有很多种,根据光信号接收位置的不同,光电法又可分为透射和反射两种模式。

1、透射式光电法

透射式光电法指的是可穿戴设备上的发生器(emitter)和光敏接收器(detector)位于所测部位的两侧(通常由一个夹子固定),入射光穿过皮肤进入深层组织,除了被皮肤、肌肉、血液、骨骼等吸收外,剩下部分的光线透射被光敏接收器感知。根据其原理,这种方法适用的测量部位是人体两面距离比较短的组织,如耳垂、手指、脚趾等,而具有代表性的智能穿戴产品就是那些耳夹式心率监测仪、指甲式血氧仪等。

采用透射式光电法的智能穿戴产品通常以一个夹子固定。

这一监测方法的产品在外形上通常采取密封暗盒的结构,能很好的减少外源性的光干扰,从而提高测量精度和稳定性。由于其信噪比高、信号稳定,除了测量心率之外还可以通过波形分析心搏功能、血液流动等诸多心血管生理信息。缺点是,不适合应用在智能手环、智能手表上,而应用在耳垂、脚趾等部位的产品又会有穿戴不舒适的感觉。

2、反射式光电法

与透射式光电法刚好相反,反射式光电法中,可穿戴设备上的发生器(emitter)和光敏接收器(detector)位于所测部位的同一侧,主要测量反射回来的光。这种方法测量心率的优点是非常简便,对测量部位的要求也很低,只要组织比较平滑且皮下脂肪少的的地方几乎都可以测量,比如额头、手腕。因此,大部分智能手环、智能手表等穿戴设备都采用了这种方法测量心率。而且,以智能手环或智能手表的产品形式出现也完美地解决了透射式光电法中心率监测与佩戴舒适的双重要求。

不过,反射式光电法虽然在稳定状态下表现良好,但是当设备戴在手腕末端,会随着使用者走路或无规则运动而像钟摆一般上下荡,离心力将使得血液量出现大变化;当血管收缩压与离心力在血液中交互作用,就更难分辨血管中的血量。因此可能降低心率数据的准确度。此外,可穿戴设备佩戴的松紧和人体皮肤血流量的大小也会影响到监测准确度。

心电信号法

心电信号法其实就是医疗级别常用的最准确的测量心率的方法。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着无数心肌细胞动作电位变化,这些生物电的变化称为心电,而通过心电的周期性变化便可以检测到心率。除了心率,心电图还可以提供包括心脏功能障碍、心脏疾病、以及心脏功能恢复情况、患者的躯体和心理压力情况等。

对于智能穿戴设备来说,配备的传感器可以通过测量心肌收缩的电信号来判断使用者的心率情况,原理和心电图类似,这种方法的准确度非常高,但缺点是电路比较复杂,占PCB空间比较大,易受电磁干扰,同时传感器必须紧贴皮肤,放置位置相对固定,所以采用这种测量方式的智能穿戴产品并不多见。

心电图导联体系。

压力振荡法和图像信号分析法

压力振荡法主要应用在电子血压计上,血压计袖带给手臂加压,通过薄膜压力传感器探测动脉血管的搏动振幅进行AD转换,从而测量血压与脉率(根据一定时间内有多少个脉搏波计算出心率)。图像信号分析法主要是利用脸部图像估测心率。因为,心脏跳动时人脸上的颜色会产生细微的变化,而且胸口和肩膀也有细微的动作,对采集到的图像进行可以估测心率和呼吸频率。美国麻省理工学院推出的Vital-Radio则是由路由器发出Wi-Fi信号,当信号遇到周围的人或者物体的时候就会马上反弹,通过特殊的算法可计算出每次信号的反射速度,以此来判断有无生命物体,如果是生命体的话,这款产品就会记录人体心率和呼吸频率。

这两种方法对使用者要求较高,仅限于人体相对静止的情况,方法不当结果也会差很多,甚至患有某些心血管疾病的病人测量结果不太准确。因此,智能穿戴设备领域采用这两种方法测量心率的产品非常少。

智能穿戴产品该怎么选?

看完上面介绍的这些心率监测方法,那么消费者到底该选哪一种智能穿戴设备好呢?

对于智能穿戴设备厂商来说,这取决于产品的市场定位。如果定位为一款时尚手环,那么其监测心率的功能很多时候只是一种点缀,用户使用的大多数功能可能是看时间、短信推送、记步等,这时候仅仅需要能提供静态心率功能就足够了。如果是运动手表,光电法以其便捷性和穿戴舒适性取胜;主要应用于运动方向,那么通过光电法监测的心率准确率基本上可以满足需求。此外,对于普通的运动监测需求,运动手表需要做到动态心率功能,及能实时的长时监测心率,并且需要在运动过程中能较好地排除由运动造成的心率信号干扰。因此,采用加速度计等补偿算法是更好的选择。

对于普通消费者来说,目前世面上绝大部分智能穿戴产品的心率监测功能都较为准确,作为普通人运动和健身监测的工具绰绰有余。因此,只需要按照自己心里预估价位、个人喜好等特点挑选即可。不过,对于相对专业的运动员来说,建议佩戴测心电信号的心率胸带,因为这类产品的准确度更高,可以通过监测运动员的心率变异性以提供更多的健康指标。


深圳市图扬科技有限公司

专注于蓝牙音箱、蓝牙耳机、车载应用、智能家居、IoT物联等市场领域方案开发

拥有强大的技术团队围绕MCU微控制器、音频解码SoC、蓝牙音频数传BLE及各类微电子传感器的技术做相应的产品方案设计及研发

电话:+0755-21003695/21003965

网址:www.tome-sz.com

邮箱:tome@tome-sz.com/hr@tome-sz.com(简历投寄)

图扬科技|可穿戴设备该如何选择静电抑制器?

在智能手环、智能手表、智能眼镜日日推陈出新的今天,电容值低、封装尺寸小的静电抑制器受欢迎程度可谓是与日俱增。可穿戴设备拥有广泛的形态,如运动手环、智能手表、头盔、智能穿着等等,提供多种多样的使用体验。毫无疑问,越来越多用户开始关注可穿戴设备,整个市场也极具潜力,这也促使数码厂商们将其视为新的赢利点,各种新设备呼之跃出,瞄准用户的钱包不断轰炸。可以预见至少在未来的3到5年内将不断有各种各样的产品和试作面世,形成具备以下特征的市场:

  • 市场快速创新,而消费者的需求也以同样的速度快速变化;

  • 全新类型的产品出现和发展,有时候也会最终消失;

  • 出现众多相互竞争的产品,但未能形成标准的功能集;

  • 即使有也只有很少的标准化架构或接口标准。


可穿戴设备饱受关注的同时,其产品质量也随之受到整个市场的监督。可穿戴设备的标准架构、功能集和专用芯片的缺失为本来就面临紧张成本、功耗和尺寸约束的移动消费电子设计带来了许多前所未有的挑战。除了电池功耗和体积外,抗噪声,抗干扰,防水,防摔及抗人体静电破坏能力也成为设计开发者所关注的难点。在提高 抗系统静电能力等可靠度相关的规格,将可以避免穿戴式装置过早损坏,除提高产品质量评价,亦降低售后返修成本。


消费者是直接通过接触皮肤进行穿戴,极大的暴露风险是使用者产生的静电。静电可以说是无处不在的,即使最简单的人类接触也可以生成短暂的静电放电(ESD)。如果没有适当的保护,没有任何传感器电路、蓄电池、充电接口、按钮、或数据输入输出可以为ESD提供进入可穿戴设备的路径,都对电子产品造成不可挽回的伤害。


选择适当的静电抑制器


1、较低的电容来避免干扰高速数据传输

ESD保护器件必须提供不干扰日常功能的的电路保护。例如,在射频接口(如蓝牙或无线局域网)或像USB2.0的有线端口,ESD保护器不能造成信号失真或数据信号强度损失。为了保证信号完整性,ESD保护器的电容必须被最小化,而不减弱保护水平。

2、利用较低的钳位电压来保护最敏感电路

如果发生ESD放电事件,ESD保护器的主要工作是尽可能转移和消散ESD瞬态电压。该特点通过静电脉冲时减少状态阻力或动态阻力,得到改善,通过ESD保护器比被保护电路携带的冲击电流更多。通过这样做,它减少了集成电路上的静电释放压力,并确保其生存。

3、更小巧的尺寸,以适应可穿戴设备中有限板的可用空间


无论保护器件如何高性能运转,如果不能适应具体的应用环境,也是没有用的。可穿戴设备变得更薄、更小,电路板会有最小的可用空间,以适应ESD保护方案。分离器件的保护方案是最好解决该潜在设计挑战的途径,因为他们给设计工程师提供特殊电路板布局的灵活性。



在抗静电保护组件ESD静电抑制器拥有数十年经验的硕凯电子开发出了电容值更低、封装更小的ESD静电放电二极管,基本满足可穿戴设备的静电防护需求,确保可穿戴设备静电防护方案的有效性。


深圳市图扬科技有限公司
 

图扬科技专注于消费类电子、3C数码、汽车电子、智能家居、医疗电子、美容个护、小家电以及IoT物联等市场领域,拥有强大的技术团队围绕MCU微控制器、音频解码SoC、蓝牙音频/数传BLE以及各类微电子传感器等半导体的技术做相应产品的方案设计及研发。

方案开发热线:0755-21003965

图扬官网:www.tome-sz.com


图扬科技|可穿戴技术在教育领域的应用

专家说,自我追踪工具(比如Fitbits)和运动传感器可能会让人们更好地了解他们的学习方式。虽然可穿戴设备的计步和记录睡眠时间的功能很常用,并已成为人们的一种习惯,但类似的“数字化自我”在教育领域的应用还处在发展的早期阶段。英国开放大学(Open University)的一位研究员总结了教育专家们期望的可穿戴技术在K-12和大学的应用:能否自我跟踪学习之旅?怎样弄清一个学习日好于另一个学习日?数据是否能以一个有意义的和学术的方式呈现?


想要了解一些自我监控设备对教育的影响,首先要弄清这些技术的定义。俄亥俄州立大学教育技术系副教授说,可穿戴设备是自己和世界之间的“亲密的双向通道”。不同于电脑或手机与我们的互动,可穿戴设备自动收集我们的信息,主动采取提示行动。想象一下,在你日常工作中,Fitbit轻轻地推了你一下,让你离开你的办公桌走上几步。


随着可穿戴技术的成本不断下降,研究人员以往任何时候都有更多的机会研究人类生理学和学习之间的关系,确定其是否有一个相关性。例如,心脏跳动次数或皮肤温度变化和在课堂上的参与度之间的关系。

“我们通过身体的变化去推断心理状态,”德克萨斯大学阿灵顿分校的研究人员给学生配备了初创科技公司Empatica的E4手环,监控心率变化和皮肤电活动,用来测量学生的情绪反应。这个想法是为了更好地理解“身体感受是如何影响学习的”。


在纽约州立大学奥斯威戈分校,心理学助理教授一直在跟踪学生的心率,以了解他们在课堂上的情绪变化。从上午9点到晚上午11点,每三个小时,短信会提示学生输入其心率,并回答问题,问题包括“你感觉怎么样”和“你在一个小班还是大班上课”等。通过检测一天中不同时间学生情绪状态的变化,研究人员希望更好的理解学习和感情之间的关系。

研究人员甚至在研究学习姿势是如何与获取知识的能力有关的。研究人员在太平洋大学的教室里布设微软Kinect动作传感器,跟踪学生48块骨骼位置的变化。“我们能将坐姿与学生的注意力关联吗?”研究员问,“有一些活动能更好的让学生振作吗?”


将可穿戴技术带到教室的另一种方法是授权学生自己提供数据。借鉴彼得·德鲁克的“如果你不能测量它,你便不能改善它”的理论,教育者正在思考可穿戴式技术如何成为学生学习的激励因素。如果学习者可以实时看到学习物理的迹象,他/她就能做出类似于一个Fitbit所有者可能会采取的调整步骤么?


在某些情况下,研究人员断定,当学生们分析自己实际的数据,而不是从教科书来的假设的数字时,学生会学得更好。犹他州立大学教育技术学副教授研究了配备个人健康追踪器的小学生,在他们走上坡和下坡时,分析其心率、步数后发现,实际分析的学生情况比教科书上的数字提示表现更好。


作为一个新兴的技术,可穿戴设备在教育中的应用涉及到的伦理问题比比皆是。谁为什么目的在使用学习者的数据?


“将可穿戴设备整合到教育领域,需要发展信息的透明度。”“道德往往落后于技术”,俄亥俄州的Voithofer说。当与其他数据集或重复多个目的使用相结合时,个人数据变得更加抽象。比如一个装置,匿名收集学生关于情感模式的数据,之后,这个信息可能会与其考试成绩关联。一些学生可能会反对大学测量他们的情绪状态从而对他们的学术表现作出判断。

在之前的研究人员、教育工作者和企业实施的可穿戴技术学习环境中,Voithofer要他们仔细考虑数据是如何收集和使用的。“我们需要发展可穿戴设备运用到教育领域中信息的透明度,透明度是道德责任的核心。”


这也是一个提醒,不是所有的东西都可以测量的。过分依赖数据有可能导致研究人员对学生如何学习做出错误的假设。


深圳市图扬科技有限公司

专注于蓝牙音箱、蓝牙耳机、车载应用、智能家居、IoT物联等市场领域方案开发

拥有强大的技术团队围绕MCU微控制器、音频解码SoC、蓝牙音频数传BLE及各类微电子传感器的技术做相应的产品方案设计及研发

电话:+0755-21003695/21003965

网址:www.tome-sz.com

邮箱:tome@tome-sz.com/hr@tome-sz.com(简历投寄)

图扬科技|可穿戴设备历史

现在的智能设备是微型化与便携化、无线通信、低耗能计算和高级显示技术的发展趋势相互交织而成的产物。这些设备的核心基础——智能手机已经诞生了 近20年的时间,而现在的智能可穿戴设备正准备引领下一轮的创新热潮。这些创新都是建立在已有的技术之上的。我们是如何走到现在这一步的呢?这是一段值得回顾的历史,而且我们也可以从中总结出未来的前进方向。


通往微型化、数字化和一体化的道路

除了过时的穿着以外,1970 年代中期的特色还有挂在人们脖子上的便携电子设备。到了 70 年代的末期,相机、收音机和 Walkman 随身听都已经变成了更小、更便宜和更为个人化的设备——它们组成了消费电子产业的基础。

数字革命的种子也是在这个时代生根发芽的,而它最重要的一片土壤就在人们的手腕之上。1969 年,精工推出了世界上第一款自动石英手表,它是通过表壳内旋转摆实现自动上链的。在不久后的 1974 年,世界上第一款电子手表 Casiotron 也诞生于卡西欧之手。后来卡西欧不断推出新款电子手表,其中包括 Casio Databank CD-40,这块手表可以储存电话号码之类的数据,而且提供了计算器功能。

诞生于这个时代的设备还包括数码相机。柯达在 1975 年率先研发出数码相机技术,但是它没有采用这个概念——所以数码相机在往后的 20 年时间内几乎没有得到任何发展。

到了 1990 年代后期,设备微型化和数字化的发展进入了白热化阶段。小型数码相机已经成为了市场的主流。Garmin 便携 GPS 设备在 1990 年推出。蓝牙耳机在 2000 年上市。2001 年,iPod 的出现彻底颠覆了音频和消费电子产品市场。最终,这些个人电子设备经历了从单一设备到外接设备,再到智能手机的内部元件的转变——它们全部被整合到了一台真正可移动和一体化的智能设备上,这是一个更简便,也更低成本的选择。


带动人类与技术的交互

1970 年代,笨重的电视机已经成为了客厅的常客,但是观众看到的主要是木制边框,电视屏幕只占中间的小部分。为了提升电视屏幕的面积比例,当时主流的阴极射线管(CRT)技术正迅速向背投大屏幕发展。

平板液晶显示器(LCD)技术的出现是电视发展轨迹的转折点,同时也彻底改变了计算机和可穿戴设备领域。卡西欧在 1983 年推出了第一台 LCD 电视,随后夏普在 1988 年发明了薄膜 LCD 技术。能耗较低和越做越小的 LCD 为全彩色的高清屏幕打下了基础,这些屏幕被装进了大大小小的设备当中——从 100 英寸以上电视到智能手机、智能眼镜和虚拟现实头戴装置。

显示技术的进化还催生出了现代智能设备的另一支柱——触控功能。随着 LCD 在便携式计算机上的普及,原本应用于计算机触摸板的电容触控技术也被集成到了智能手持设备的显示屏上——比如 IBM 在 1993 年推出的 Simon 电话。

在电容触控技术的帮助下,用户无需使用实体键盘或者触控笔等外设也能与设备交互。随着苹果将收购得到的 FingerWork 技术应用在 iPhone 之上,电容触控发展成为了现在随处可见的多点触控功能。

屏幕与触控功能的融合形成了现代可穿戴设备的基础用户界面。随着设备与用户的距离越来越近,用户界面和交互也需要变得更为自然——而且没有任何一种方式可以适用于所有的用户和使用情况。这些用户体验技术都源自当年功能简陋的电视机,而如果没有这些技术的融合,可穿戴设备这个产业可能根本不会出现。


规模经济使一切成为可能

在手表和便携设备不断发展的过程中,现代计算机也没有落后——它的体积一直在不断缩小,而且对用户也越来越友好。自从 DEC 微型计算机和第一台个人电脑出现以后,移动计算领域也在 1986 年成为了现实,东芝在这一年推出了世界上第一台大规模销售的笔记本电脑 T1100。

笔记本电脑不断向小型化和便携化发展,最终催生出了个人数字助理(PDA)的原型。随后苹果以自己在 1980 年代末开发 Newton 平台为基础,推出了多款 PDA 设备。Palm Computing 也在 1996 年推出了自己的第一款 PDA 产品 PalmPilot。

黑莓在 PDA 的基础上开发出了 Inter@activePager 900,这是一台翻盖式的双向传呼机。由于这款产品的成功,黑莓在 1990 年代接连推出了多款传呼机设备,它们可以说是我们现在使用的平板电脑和智能手机的原型。

在经过了这些发展阶段之后,各家子系统和芯片公司都研制出了改进产品的新技术,而更重要的是,它们具备了批量生产数百万个产品的能力。这样不仅可以降低生产成本,而且所有我们能想象出的设备都可以加入计算能力。半导体的生态系统、生产商和生产设备的投入造就了整个智能可穿戴设备产业。如果没有这些的话,它们也许只会继续成为高价低量的小众设备。


设备与互联网的结合

网络是连结不同技术发展分支的粘合剂。在最开始的时候,网络的标准是繁琐而昂贵的模拟系统,当时的语音和数据是被完全割裂的。

1980 年代初期出现了两股力量——无线网络技术和分组交换数字网络,它们的结合带动了一场变革。设备制造商和软件公司联手制定了一系列的协议和标准,包括以太网和 Wi-Fi 等——它们使得互操作性、集成性和云端架构成为了可能。

随着移动计算的发展,无线网络也开始变得标准化和商品化。如此一来,互联网不仅会覆盖服务器和个人电脑,还可以延伸到便携计算设备,最终与 RFID、低功耗蓝牙和 ZigBee 等技术共同推动物联网的概念。

现在的智能可穿戴设备需要依赖于无处不在的通信网络。这些设备所生成和消费的数据将会成为次世代网络的发展动力。我们已经开始看到,由联网设备组成的个人网络会对网络拓扑结合和流量模式产生深远的影响。

在智能手机出现以后,计算机、通信、显示器和便携电子设备的共同发展趋势开始互相融合。在 15 年后的今天,智能手机成为了一个通用系统——下一代可穿戴设备的发展基础。

经过了长时间的技术融合之后,我们得到了智能手机这个一体化的消费者设备,同时也开始进入一个充满新的创意、新的选择和新的设备的时代。其中有些设备是将现有的功能分解到更合适的形态上实现,比如手表和相机。另外一些设备正准备取代智能手机,并通过加入新的功能来应对更为复杂和高级的使用场景,智能眼镜就是其中的代表。


可穿戴设备与物联网:人类与机器的结合

我们已经亲眼目睹了可穿戴设备的迅速发展——它是由四个核心技术分支融汇贯通形成的一个全新的设备类型。当我们在几年之后回顾可穿戴设备的发展历史时,我们肯定会将焦点放在一个新概念之上——物联网,这是由联网的环境和联网的人类共同组成的网络。可穿戴设备和物联网之间存在天然的联系,而且这种联系拥有宝贵的自我强化能力。

物联网应用正在普及到各个领域:室内领域的家居自动化、安防系统和智能灯光;户外领域的联网停车、交通流量计和零售/支付设备;工作领域的设备追踪、位置访问传感器和智能工具。

跟可穿戴设备类似,它们内容都含有低耗能的小型计算单元,并整合了多种传感器和网络连接。不过所有物联网设备都需要与人相连,而这就是可穿戴设备可以发挥作用的地方。我们已经在企业看到了物联网应用的爆发性增长——例如生产设备与工人佩戴的智能眼镜之间的连接。


总的来说,可穿戴设备的历史就是一段融合的历史。电子设备、通信、计算机和显示屏这四个产业的进步均为智能可穿戴设备的出现创造了技术条件。我们正处于一场重大技术变革的开端,而这场变革的影响将会触及到每一个人。


深圳市图扬科技有限公司

专注于蓝牙音箱、蓝牙耳机、车载应用、智能家居、IoT物联等市场领域方案开发

拥有强大的技术团队围绕MCU微控制器、音频解码SoC、蓝牙音频数传BLE及各类微电子传感器的技术做相应的产品方案设计及研发

电话:+0755-21003695/21003965

网址:www.tome-sz.com

邮箱:tome@tome-sz.com/hr@tome-sz.com(简历投寄)